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physical or geophysical workflows, log data clean-up is done 
manually, one well at a time. The clean-up tasks include, but 
are not limited to, verifying information in the LAS files, curve 
categorization, units’ standardisation, log splicing, and log spatial 
normalisation. The manual approach to well log clean-up is not 
scalable, as training ML algorithms requires extensive data. To 
create practical ML tools for well log prediction, we first need to 
develop an automated pipeline for well log cleaning.

This paper presents an end-to-end machine learning work-
flow for well logs prediction at a basin scale. The first section 
describes the well log cleaning processing, which encompasses 
an extensive data clean-up before ML training and inference. The 
second part of the paper introduces the ML training, validation, 
and inference based on a gradient-boosted regression trees algo-
rithm. We developed an ML pipeline to predict missing data in 
well logs for ten US onshore basins (Figure 1). The ML workflow 
is illustrated on data from the Permian Basin in the US.

Well log clean-up workflow
This section describes the well log cleaning pipeline, which 
encompasses extensive data clean-up before ML training and 
inference (Figure 2). The pipeline includes assigning each curve 
to a predefined category, verifying information in LAS and log 
headers, splicing, and merging logs from different runs, depth 
shifting for log depth alignment, normalising logs for tool/
environmental effects, and removing or editing inferior quality 
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Summary
Log data recorded by wireline tools are incomplete in most 
well locations. Vital information often needs to be predicted to 
precisely characterise the Earth’s subsurface. Here we describe 
a machine learning (ML) workflow to predict missing data in 
well logs at the basin scale. The ML models produce outstanding 
results when adequate quality data is provided for the model 
training and inference. Using examples from the Permian Basin 
in the US, we illustrate the use of the automated data clean-up 
pipeline and the clean-up impact on ML algorithm training and 
prediction. The ML models achieve a prediction quality of 90% to 
95% in a blind test containing 679 wells if trained on clean data 
from the Permian Basin.

Introduction
Wireline logs are an integral component in characterising subsur-
face properties. For economic reasons, data from specific logs or 
depth intervals are not collected, resulting in incomplete informa-
tion from the surface to the base of the well in most locations. An 
alternative that addresses the lack of data is to create synthetic 
curves. With the availability of millions of digitised wells with a 
wide spatial distribution and the recent advances of data science, 
the prediction of missing logs or missing log intervals with 
machine learning (ML) algorithms is now possible.

Data preparation and clean-up are fundamental steps before 
ML algorithms training and inference. In conventional petro-
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Figure 1 US onshore basins with existing ML models 
for predicting missing data in well logs. The polygons 
indicate areas where we created ML models. The 
yellow polygon encircles the data used for the 
Permian Basin model.
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urement systems, with typos and mistakes or sometimes with no 
units. In this step of the flow, the necessary unit conversions are 
performed. We also have a comprehensive list of unit aliases to 
cross-check typos in the unit names. Curves with nonstandard 
units are flagged and can be checked manually.

Curve categorisation and unit correction can provide addi-
tional data for further use. Figure 4 (a-b) presents the results 
of fixing the mnemonics and the units of gamma-ray logs for 
an arbitrary cross-section of 800 wells in the Permian basin. 
Figure 4a shows the cross-section with minimal mnemonic and 
unit processing using common mnemonics. The cross-section 
(Figure 4a) is missing data compared to the cross-section in 
Figure 4b, where we used a more comprehensive mnemonic table 
and automatic unit discovery with standard unit conversions. Due 
to thorough mnemonic and unit QC, several logs are added to the 
cross-section (Figure 4b).

Log splicing
Log splicing (merging) is a critical step in the log cleaning work-
flow. This process combines similar log curve measurements 
from different logging runs to construct a single curve. Overall, 
log splicing is hard to automate, especially if there is no metadata 
information on multiple logging runs. But after making reasona-
ble assumptions and simplifications, we can achieve basin-wide 
reliable results.

The log splicing starts by defining the primary and second-
ary curve(s) in all available logging runs. The primary curve is 
selected to be the longest valid (with correct units and values 
in a predetermined range) curve that overlaps with most of 
the critical logs in the well. The quality of secondary curves 
is rated. Later, they are merged into the primary curve in the 
order of importance. The primary and secondary curves are 
compared in overlapping intervals during the splicing process. 
We fixed the depth mismatch by shifting the secondary curve 
to be depth-aligned with the primary. After confirming that 
curves are ‘tied’ in-depth, we also need to ensure that curves 
are on a similar scale as logs must be calibrated relative to each 

data. A design principle observed during the clean-up was to 
minimise human interpretation as much as possible to allow for a 
basin-wide application.

Curve categorisation
There is no standard naming convention for well log curves. The 
name of the curve depends on the measurement type, logging 
tool, and the operator. Different operators have different naming 
conventions for the same measurement types. As a result, a 
basin-wide set of LAS files may include hundreds of varying 
curve mnemonics.

The first processing step in our log clean-up workflow is 
assigning a category to each curve in the dataset. We considered the 
following main curve categories: Gamma-ray, Neutron Porosity, 
Compressional Sonic, Bulk Density, and Resistivity. The Neutron 
Porosity is further classified in the flow based on the rock matrix set 
up for the measurements: limestone, sandstone, or dolomite. The 
resistivity curve is additionally categorised based on penetration 
depth (deep, medium, shallow, micro). We built a comprehensive 
list of mnemonics for each curve category that users can update if 
a new unknown mnemonic is encountered.

Sometimes the same mnemonics can be encountered for 
different log types in a LAS file. One example is SGRD, which 
can be found for either spectral gamma-ray curve run with density 
tool or shallow guard resistivity curve. To assign the curve to 
correct categories, we need to check the units of the curve, curve 
description, and/or curve values. SGRD mnemonic clash is a big 
problem for US onshore basins. Figure 3 shows the scale of the 
problem for the Permian and Eagle Ford basins. While for the 
Permian basin, not resolving the SGRD mnemonics issue results 
in 1% of miscategorised curves, for the Eagle Ford basin, this 
error reaches 13%.

Units standardisation
Unit standardisation is a necessary step in the log clean-up pro-
cess. Although there are standard units for different curve types, 
curves are also reported in non-standard units, using other meas-

Figure 2 Well log clean-up workflow.

Figure 3 SGRD curves for different curve classes in 
Permian (a) and Eagle Ford (b) basins. RXO_SGRD 
is an SCGR mnemonic that was assigned to the 
shallow resistivity category based on curve analyses. 
GR_SGRD SGRD is an SCGR mnemonic assigned to 
the gamma ray category based on curve analyses.
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The effects of splicing are shown in the cross-section in 
Figure 4c. After taking a closer look at the differences between 
Figures 4b and 4c, we notice that more data is added to the 
cross-section.

Logs spatial normalisation
After unit standardisation and log splicing, a log curve basin-scale 
spatial normalisation is necessary. Basin-scale well log datasets 
contain wells of different vintages, logging tool manufacturing, 
calibration variations, inconsistent log units, changes in borehole 
environment (size, drilling fluid, etc.), and various environmental 
corrections. By basin-scale spatial normalisation, we renormalise 
logs with obvious scale problems to have the same overall trends 
based on the neighboring wells.

The normalisation process described here is similar to a 
recalibration of the curves in the log splicing tool discussed 
previously. Calibration is applied to the curves in the same well 
before merging, while normalisation is the process that stand-
ardises logs from different wells across the dataset. Basin-scale 
spatial normalisation is commonly applied to statistical logs like 
gamma-ray and neutron porosity. Other logs like resistivity, bulk 

other before merging. If required, the calibration happens in the 
overlap interval after removing artifacts at the end of the curves 
(e.g., casing points, stacked tools). After calibration, the logs are 
on the same scale and can be merged.

Examples of this processing step are shown in Figure 
5. Figure 5a shows the importance of calibration before log
splicing. The first track shows two gamma-ray curves from the
same LAS file. The black curve (primary) has a more significant
variance than the red curve (secondary). It is also offset and
reads higher values for the same depths. After normalisation,
the second track shows the same curves; the curves are brought
to the same scale and show consistent reading in the overlap
interval. Finally, the third track shows the spliced curve ready
for further processing.

The depth alignment before log splicing using two gam-
ma-ray curves from the same LAS file is shown in Figure 5b. 
There is an apparent depth mismatch between the two curves 
in the first track. In the second track, the curves are depth 
aligned. The red curve (secondary) is shifted upwards to match 
the black curve (primary). The third track shows the spliced  
curve. 

Figure 4 Change in the state of an arbitrary gamma-
ray cross section in the Permian Basin during the 
clean-up workflow. (a) Shows data with common 
mnemonics and standard units. (b) Shows the same 
data after more rigorous mnemonic analyses, fixing 
mnemonic clashes, checking, and fixing unit issues. 
Due to thorough mnemonic and unit quality control, 
several logs are added to the cross-section. (c) 
Shows the effect of log merging from different runs. 
The wells have better depth coverage. (d) Shows 
the effect of basin-scale log normalisation. Most 
artificially high and low gamma-ray values present in 
4c are fixed in 4d.
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In our workflow, we apply normalisation to gamma-ray logs 
only. Gamma-ray logs are used to determine the percentage of 
shale/sand in the lithology column. This is a relative measurement 
where we need to define sand and shale baselines. Absolute meas-
urements are not crucial for this calculation. Normalisation, if done 
correctly, will not affect rock properties derived from gamma-ray. 
Normalised gamma-ray logs are easier to use in batch processing, 
where a set of interpretation parameters is applied across the whole 
field. Equation 1 was used for normalising gamma-ray logs to a 
reference curve so that the range of the values after normalisation 
becomes comparable to the reference curve:

 (1),

where  is the gamma-ray log value before normalisation, 
 is the gamma-ray log value after normalisation,  is the 

gamma-ray log ‘sand’ point,  is the gamma-ray log ‘shale’ 
point,  is the reference gamma-ray ‘sand’ point,  is 
the reference gamma-ray ‘shale’ point. Gamma-ray low value 
(‘sand’ point) is the average gamma-ray count for clean sandstone 
of local geology. Gamma-ray high value (‘shale’ point) is the 
average gamma-ray counts for clean shale. Low sand and high 
gamma-ray constants can be approximated by the 5th and 95th 
percentile curve statistics correspondingly.

Figure 6 shows the effect of spatial normalisation in two 
adjacent wells. Figure 6a shows two gamma-ray curves from 
different wells before normalisation. The black curve is used as 
a reference. The red curve reads remarkably high gamma-ray 
values and needs to be normalised. Figure 6b shows the same 
curves after normalising the red curve using the black curve as 
a reference. After normalisation, the gamma-ray log range is 
similar for both wells.

density, and sonic are not normalised unless there is a good rea-
son, as normalisation can result in artificial changes in the tool’s 
response to rock properties or geological variations Shier (2004).

Figure 5 Problems solved in the log splicing process. (a) Calibration before log splicing. (b) Depth alignment before splicing. The first track on each panel shows two curves 
in the same well: the primary curve is black, and the secondary curve is red. The second track shows the same curves after shifting. The last track shows the final merged 
curve after log splicing.

Figure 6 Gamma-ray curve (red) before (a) and after (b) normalisation flow as 
compared to the reference curve (black).
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up by removing zones with questionable data. After clean-up, 
the cross plot has a better-defined trend and less ‘noise’.

Machine learning logs modelling
A complete well log suite with no data gaps and maximum data 
coverage can provide insight into various subsurface intelligence 
problems, such as lithofacies picking, velocity model building and 
production prediction. Analytics Ready LAS (ARLAS) is a basin-
scale machine learning pipeline that can predict missing logs. 
The target logs for prediction are the bulk density, gamma-ray, 
neutron porosity, deep resistivity, and compressional sonic. For 
each target curve separate models are trained from different com-
binations of available measured curves. The underlying algorithm 
for curve prediction is gradient-boosted regression trees.

The gradient-boosting tree algorithm
Gradient boosted trees belong to a class of tree-based methods 
(Breiman 2001; Ranka and Singh 1998; Machado 2003) with 
the capacity for modelling data-driven piece-wise target-feature 
interactions. A single-decision tree ML model is built, asking 
questions to partition data recursively based on the feature values 
before reaching a solution. Figure 8 shows the flowchart diagram 
of a decision tree. The main advantage of a decision tree model is 
that it is easy to understand and interpret.

One of the biggest problems with decision trees is overfit-
ting (inferior performance on the data not used during training). 
Ensemble methods were developed to overcome this problem. 
They produce several different models and use them to reach 
the final solution. The gradient-boosting (GB) algorithm (Chen 
and Guestrin 2016; Li et al. 2007) uses an ensemble of short 
decision trees. It predicts a target value by building weak (only 
slightly better than random choice) prediction models where 
each model tries to predict the error left over by the previous 
model. Another aspect of GB is that the algorithm concentrates 
on the data that does not give a good result by weighing them 

Reference curve selection is vital for the log normalisation 
process. We can elect to normalise to a single ‘key’ reference 
curve if we work with a limited number of wells. Normalising 
the curve on the basin scale to a single reference curve will no 
longer be adequate as lithology may change dramatically over 
considerable distances. Our approach is to select multiple ‘key’ 
reference wells so we can build basin-wide grids using statistics 
from these wells. The grids then can be used to normalise the rest 
of the wells in the basin.

Figure 4d shows the effect of basin-scale log normalisation 
on a cross-section view. Artefacts shown in cross-section 4c 
are fixed after normalisation (4d). As a result, the cross-section 
becomes less disrupted by outliers.

Bad data identification
Well-log curves can report erroneous values related to borehole 
conditions or equipment failures. The borehole errors can 
be due to cave-ins, significant mud cakes, and sub-optimal 
mud types. Another type of error may result from equipment 
failures, recording errors, or bad tool calibration. They are easy 
to spot by a trained petrophysicist, but it is harder to train a 
machine and automate the identification in thousands of wells. 
In our automated workflow, the user sets basin-wide limits on 
minimum and maximum values to flag intervals of bad data 
quality. Outliers are then removed from those intervals, and 
a flag is set for each curve. Bulk density curve corrections 
can also rely on complementary curves such as caliper and 
density correction readings to flag zones where the log may be  
compromised.

Another way to flag zones of questionable data is by 
cross-correlating different curves. In most cases different curves 
(e.g., density and sonic) show strong correlation or anticorrela-
tion as they respond to changes in the same rock properties (e.g., 
porosity, saturation, the volume of clay, etc.) or combinations of 
them. Two cross plots in Figure 7 show the effect of data clean-

Figure 8 Diagram of a decision tree ML model. The 
decision nodes partition the input data based on 
the value(s) of their feature(s). Leaf nodes store the 
outcome of the prediction.

Figure 7 Cross plot of the sonic and density data for 
a well in the Permian Basin. (a) Shows data before 
clean-up. (b) Shows data after clean-up. The effect of 
data clean-up is a better-defined correlation between 
sonic and density with less ‘noise’.
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with depth. Spatial features help to tune the model to variations 
in local geology.

We train models for different combinations of input 
features and target curves since we can expect variations in 
feature availability in each well and for different depths within 
the same well. When predicting sonic from gamma-ray and 
resistivity the feature vector will consist of gamma-ray, the 
logarithm of resistivity, spatial locations (latitude and longi-
tude), and TVDSS. We train 15 models for each target curve in 
a basin to predict the target when different combinations of the 
five main curves are present.

Some logs are run more often than others and have overall 
better depth coverage. We can expect gamma-ray and resistivity 
logs to be available in any basin with the most depth coverage 
from the top of the well to its base. Sonic and density logs are 
expensive to run and are not as readily available. This impacts 
the number of samples available for each model during training.

higher as new learners are trained. GB also uses a learning rate 
and a loss function to ensure the learning is done optimally. The 
learning rate and the number of learners employed in the model 
are usually determined during the model hyperparameter tuning 
stage. In our work, we use the Light Gradient Boosting (LGB) 
Tree Algorithm (Ke et al. 2017), an optimised version of the 
GB algorithm.

Features
The underlying tree structure in LGB is invariant to scaling. 
We can use features in their raw form without normalisation 
and rescaling. Our pipeline uses the following input features to 
predict desired logs: compressional sonic log, gamma-ray log, the 
logarithm of deep resistivity, logarithm of neutron porosity in a 
limestone matrix, cube of bulk density, true vertical depth below 
sea level (TVDSS), well latitude, and well longitude. The depth 
feature helps the model to learn how the log properties change 

Figure 10 Results of evaluating ARLAS models on wells in the test dataset in the Permian Basin. Each row represents normalised average RMSE to predict different logs 
colour-coded by the error values. High relative errors are shown in red; low error values are shown in green. (a) Shows the error matrix for raw well logs (without clean-up). 
(b) Shows the error matrix for the same wells after the clean-up processing.

Figure 9 Application of ARLAS modelling workflow to 
a bulk density log of one of the wells in the Permian 
Basin. The first track (a) shows the recorded data in 
the well (black). The second track (b) displays the 
ARLAS prediction (red). The third track (c) shows the 
measured data (black) and predictions (red). The 
last track (d) shows the final product where original 
data (black) is combined with the predictions (red) to 
extend the log depth coverage and fill data gaps.
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We calculated the prediction error in a blind test comprising 
679 wells and evaluated the model performance in intervals where 
both data and prediction exist. Figure 10 summarises the average 
normalised RMSE (Root Mean Squared Error) for different mod-
els and feature combinations using wells in the Permian Basin. 
We normalise RMSE error by the average difference between log 
min and max values across all wells in the testing set. Figure 10a 
shows errors for different models trained and applied to wells 
without data clean-up. Figure 10b shows errors calculated using 
the same dataset, but the wells were processed using our clean-up 
pipeline before model training and inference steps.

The clean-up process reduces the error across all models, the 
bulk density log and the compressional sonic logs being the ones 
that benefit the most from it. Additionally, we can improve model 
performance by including more features in the prediction. Models 
with more features outperform the ones with fewer features. This 
is a consideration when models are selected for filling the gaps in 
the existing dataset. The model with the most features available 
will be used for each depth sample.

Figures 11 and 12 show the result of ARLAS modelling for 
a cross-section of 800 wells in the Permian Basin for bulk den-
sity (Figure 11) and compressional sonic (Figure 12) logs. Both 
figures show (in panel a) the original measured data available 
in input LAS files without any clean-up-up processing. Panel b 
shows the identical cross-sections with ARLAS predictions with 
the input data without clean-up. Panel c shows the improvements 
in ARLAS predictions using the cleaned input data. The differ-
ence in prediction quality between Panels b and c stresses the 

Model training
We follow a standard ML approach to model training. Our 
dataset is split into training and testing sets with a ratio of 75% 
to 25%. We train all models using wells from the training dataset 
and assess the model performance on the wells from the testing 
dataset. We perform five-fold cross-validation during the model 
training stage to ensure our models are not overfitting to the 
training data. Cross-validation Berrar (2019) is a standard statis-
tical approach used to estimate the effectiveness of ML models 
on unseen data. Hyperparameters of LGB models are tuned to 
achieve the best performance for each basin.

Results
This section summarises the results of ARLAS predictions using 
wells from the Permian Basin. As explained earlier, we choose 
which model to apply depending on the available data. These 
predictions are later combined with recorded logs to fill the existing 
data gaps and improve data coverage. Figure 9 shows an example 
of using ARLAS models to fill data gaps in the bulk density log 
for one of the wells in the Permian Basin. The first track on the 
left-hand side shows the recorded (measured) bulk density data 
available in a well (black). The second track shows the prediction 
of bulk density using ARLAS models (red). The third track plots 
both curves to show that prediction matches the recorded data and 
extends beyond the original log’s scope. The last track on the right-
hand side shows the final curve that combines the original data and 
predictions in the intervals where the original data is absent. This 
is the final product of the ARLAS workflow.

Figure 11 ARLAS modelling for a bulk density cross-
section of 800 wells in the Permian Basin. (a) Shows 
the original measured data available in input LAS files 
without processing. (b) Shows the same cross-section 
with ARLAS predictions added to the original input 
data from (a). (c) Shows the improvements in ARLAS 
predictions using the cleaned input data. Red arrows 
indicate areas of most improvement.
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importance of an automated clean-up process before applying ML 
to log data on a basin scale.

Conclusion
We have shown the importance of data cleaning in well logs 
prediction using ML algorithms to obtain superior quality 
results at a basin scale. Our data clean-up pipeline is simple, 
with minimal expert user interaction. It addresses errors in LAS 
and logs headers, removing or editing inferior quality data, 
normalising logs for tool/environmental effects, splicing, and 
merging logs from different runs, and depth shifting for depth  
alignment.

Using examples from the Permian Basin in the US, we have 
proved that the ML models produce outstanding results if supe-
rior quality data is supplied for the model training and inference. 
The ML models can achieve a prediction quality of 90% to 95% 
if trained on clean data. Model prediction accuracy is higher for 
neutron porosity, bulk density, and compressional sonic logs.
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Figure 12 ARLAS modelling for a compressional sonic 
cross-section of 800 wells in the Permian Basin. 
(a) shows the original measured data available in 
input LAS files without processing. (b) Shows the 
same cross-section with ARLAS predictions added 
to the original input data from (a). (c) Shows the 
improvements in ARLAS predictions using the cleaned 
input data. Red arrows indicate areas of most 
improvement. 




