
Toward high-fidelity imaging: Dynamic matching FWI and its applications

Abstract
Full-waveform inversion (FWI) is �rmly established within 

our industry as a powerful velocity model building tool. FWI carries 
signi�cant theoretical advantages over conventional velocity model 
building methods such as refraction and re�ection tomography. 
Speci�cally, by solving a nonlinear inverse problem through the 
wave equation, FWI is able to recover a broadband velocity model 
containing both high and low spatial wavenumbers, thus extending 
the approximation of residual moveout correction inherent in 
traditional velocity model building approaches. Moreover, FWI is 
capable of inverting information from the entire wave�eld (i.e., 
early arrivals, re�ections, refractions, and multiple energy) rather 
than from a subset as in conventional approaches (i.e., �rst break 
and primary re�ections), thereby availing itself of more information 
to better constrain its model estimate. However, these theoretical 
bene�ts cannot be realized easily in practice because various com-
plexities of real seismic data often conspire to violate algorithmic 
assumptions, leading to unsatisfactory results. Dynamic matching 
FWI (DMFWI) is a newly developed algorithm that solves an 
inversion problem that maximizes the cross correlation of two 
dynamically matched data sets — one recorded and the other 
synthetic. Dynamic matching of the two data sets de-emphasizes 
the amplitude impact, which allows the algorithm to focus on 
minimizing their kinematic di�erences rather than amplitude in 
the data-�tting process. �e multichannel correlation makes the 
algorithm robust for data with low signal-to-noise ratio. Applications 
of DMFWI across di�erent types of acquisition and geologic 
settings demonstrate that this novel FWI approach can resolve 
complex velocity errors and provide high-quality migrated images 
that exhibit a high degree of geologic plausibility. Additionally, 
re�ectivity images can be obtained in a straightforward manner as 
natural byproducts through computation of the directional derivative 
of the inverted FWI velocity models.

Introduction
As seismic acquisition methods continue to evolve, so does 

the e�cacy of full-waveform inversion (FWI). With the industry’s 
shift from narrow-azimuth (NAZ) streamers to wide-azimuth 
(WAZ) streamers, and most recently to ocean-bottom nodes 
(OBNs), associated acquisition advancements have enabled the 
capture of wider azimuth, longer o�set information as well as 
richer frequency content. �ese improvements have enabled the 
FWI algorithm to produce model estimates of increasingly high 
quality, to the point where FWI has become a standard tool for 
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high-resolution imaging in complex geologic settings. Examples 
of successful FWI-based mitigation of complex velocity errors 
abound in the literature and include cases of resolving velocity 
details in gas clouds, channel features, and volcanic features, as 
well as updating salt geometry (Mao et al., 2016; Michell et al., 
2017; Shen et al., 2017; Huang et al., 2019; Wang et al., 2019). 

From an inverse theory perspective, FWI can be classi�ed as 
a nonlinear inversion algorithm operating in the unmigrated domain 
— this in notable contrast to conventional re�ection tomography, 
which operates in the migrated images domain. Conventional FWI 
minimizes an L2-norm objective function de�ned as the sum-
squared di�erence between input and synthetic data. �is objective 
function can lead to unsatisfactory results on data that do not 
conform to the restrictive assumptions inherent in the FWI theory. 
�e challenges for this L2-based algorithm can be summarized as 
follows: (1) the resulting objective function is quite sensitive to 
errors in the initial model; i.e., cycle skipping can lead to convergence 
to a local minima; (2) the direct di�erence of the two data sets 
(recorded versus synthesized) is biased by large amplitude events; 
and (3) the presence of strong noise in the data can have a detrimental 
impact, causing the inversion to diverge. 

To improve the robustness of FWI, many alternative FWI 
formulations have been proposed. Some of these approaches are 
based on minimizing traveltime mismatch between input and 
synthetic events (Jiao et al., 2015; Y. Luo et al., 2016; Warner 
and Guasch, 2016; Zhang et al., 2018), while others minimize 
phase mismatch (J. Luo et al., 2016; Maharramov et al., 2017; 
Mao et al., 2019; Sheng et al., 2020). In the present approach, we 
exploit a fundamental characteristic of the seismic waveforms 
observed on both the real and synthetic data sets, namely that 
they tend to have similar patterns when localized in time and 
space. Accordingly, we seek to explicitly maximize local waveform 
similarity through use of an alternate objective function that 
maximizes the correlation of two dynamically matched data sets: 
the recorded and synthetic ones (Mao et al., 2020). 

In the rest of this paper, we �rst brie�y describe the theory 
of the algorithm. �en, we use di�erent data sets to demonstrate 
its e�ectiveness. Our experience shows that dynamic matching 
FWI (DMFWI) carries remarkable robustness with respect to 
input data imperfections. �e successful examples shown in the 
paper illustrate that DMFWI is suitable for data across di�erent 
types of acquisition geometries (NAZ and WAZ towed streamer 
and OBN), di�erent environments (shallow water, deep water, 
and land), and in various geologic settings (volcanic, salt, etc.). 
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DMFWI cost function
A key cog in the DMFWI engine is a technique known as local cross correlation, a 

method that is good for measuring similarity and phase di�erences between two waveforms. 
While local cross correlation based on time windowing alone can be used in principle for 
measuring both characteristics, experience shows that the approach can be sensitive to noise 
in the data, especially coherent noise and/or noise bursts (e.g., blend noise, swell noise, or 
turning noise). By contrast, use of a multidimensional window (i.e., both time and space) 
allows us to take full advantage of the lateral coherence of the signal, thereby improving 
the reliability of the overall matching process and ultimately guiding the velocity updates 
to match synthetic with real signal. Speci�cally, DMFWI uses an objective function based 
on multidimensional local cross correlation of the form:

Emc = cm xs ,xr ,t( )
0

T

∫xr∫xs∫ dtdxrdxs ,                                     (1) 

where cm xs ,xr ,t( ) = w x,( )d
0

0 xs ,xr + x,t +( )
x0

x0 u xs ,xr + x,t +( )d dx   is a multidimen-

sional local cross correlation in which w(x,τ) is a window function of half-length τ0, x0 in 
the time and space domain, respectively (we assume a 2D case for simplicity in exposition), 
d–(xs,xr + x, t + τ) and u–(xs,xr + x, t + τ) represent the dynamically normalized versions of 
the input data and synthetic data in local windows, and subscripts s and r denote source 
and receiver indices, respectively. �is local cross correlation is insensitive to local amplitude 
di�erences between the measured and synthetic waveforms, and it bene�ts from additional 
ruggedizing constraints applied in both the data and model domains as described by Sheng 
et al. (2020). Frequency-dependent changes in waveform are readily accommodated by 

allowing the temporal and spatial win-
dow sizes to vary with frequency, a 
modi�cation that is naturally incorpo-
rated within a multiscale approach (i.e., 
where we step from low frequencies to 
higher ones via multiple FWI passes). 
Experience shows that the DMFWI 
approach gives reliable inversion results 
even in the presence of strong noise, 
including cases where DMFWI is run 
on raw �eld data.

DMFWI and FWI imaging 
DMFWI’s value in steering FWI 

toward a high-quality result may be 
further ampli�ed considering the new 
application known as FWI imaging 
(Kalinicheva et al., 2020; Zhang et al., 
2020; He et al., 2021; Wang et al., 
2021). FWI imaging is essentially the 
process of converting the �nal FWI-
estimated property �eld to a re�ectivity 
volume. Mathematically, this conver-
sion is achieved in a straightforward 
manner by computing the normal 
derivative at all points in the property 
volume. Figure 1a shows a �nal velocity 
model after DMFWI from a dual WAZ 
survey acquired in deepwater Gulf of 
Mexico, and Figure 1b shows the cor-
responding FWI image obtained after 
applying the aforementioned di�eren-
tiation. �e latter image bears an obvi-
ous resemblance to a familiar “re�ec-
tivity-based” migrated section.

�e intrinsic similarity between 
FWI imaging and conventional migra-
tion is further explored in Figure 2 
where we display both �nal migrated 
sections (Figures 2a–2c) and FWI 
images (Figures 2d–2f) from a shallow-
water OBN survey acquired over the 
Clair Field, West of Shetland, UK. �is 
example is discussed in more detail in 
the case history section to follow. For 
now, we wish to emphasize both the 
general similarity between migrated 
and FWI image sections as well as 
intriguing di�erences, with the FWI 
image exhibiting improved continuity 
and focusing over its migrated counter-
part in many places (e.g., red ellipses) 
— this despite the discrepancy in maxi-
mum frequency used in creating the 
two results (80 Hz Kirchho� migration 
versus 40 Hz FWI image). Additional 

Figure 1. Deepwater Gulf of Mexico dual WAZ example. (a) Final velocity model after DMFWI. (b) FWI image corresponding to (a).

Figure 2. Comparison of FWI imaging and conventional migration on a West of Shetland OBN data set. (a), (b), and (c) Final 80 Hz 
Kirchho� migration results along inline, crossline, and depth slice, respectively. (d), (e), and (f) Corresponding 50 Hz FWI 
imaging results. Yellow dashed line in vertical sections indicates the 800 m depth level shown in the depth slices in (c) and (d).
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evidence in support of FWI imaging producing excellent images 
is shown in Figure 3, an example drawn from a deepwater Gulf 
of Mexico OBN survey also featured in the case history section 
of this paper. Note that this example compares an FWI image to 
least-squares reverse time migration (LS-RTM), the latter being 
an expensive algorithm known to improve image resolution and 
reduce imaging artifacts that may be present in conventional 
reverse time migrations (RTMs). Yellow arrows show where the 
FWI image has captured small fault features and has improved 
termination of the events against the base salt canopy. It is obvious 
that DMFWI’s robustness will play an important role in producing 
the high-quality models required for FWI imaging as this exciting 
new approach gains traction in our industry.

DMFWI field examples
DMFWI has been applied successfully to many challenging 

data sets with di�erent acquisition geometries, imparting unprec-
edented detail to models and providing high-�delity image 

improvements in complex geologic settings that have proved 
challenging with pre-existing model building methods. While 
the examples featured here are o�shore, recent experience with 
DMFWI on land data suggests that the algorithm can also produce 
excellent results in onshore settings, where the robust objective 
function provides an important safeguard against the strong noise 
typically observed on land records. 

NAZ data from deepwater o�shore Brazil. Our �rst example is 
a NAZ streamer data set from the Campos Basin, o�shore Brazil, 
which was recorded with 10 km cables at 100 m separation. Campos 
Basin is characterized by thick Aptian salt over an oil-rich presalt, 
directly overlain by Albian carbonates with near-salt velocities and 
then by younger slower units. One imaging challenge is the presence 
of volcanic dikes and sills. �e volcanic intervals have variable 
velocities but are signi�cantly faster than the surrounding sediments. 
�ese volcanics are relatively thin, varying from hundreds of meters 
down to a few meters, resulting in small-scale velocity heterogeneities 
that are challenging to resolve but crucial for imaging key prospective 

Figure 3. Comparison of FWI imaging and LS-RTM on a sparse, ultra-long-o�set OBN data set from the Gulf of Mexico. (a) Final model after DMFWI. (b) Migrated inline after LS-RTM using 
DMFWI-updated model. (c) Same inline as (b) but after FWI imaging.

Figure 4. Campos NAZ velocity models and migrated images before and after DMFWI. (a) Initial model. (b) Migrated image associated with initial model. (c) Final model after DMFWI. 
(d) Migrated image associated with final model, with salt interpretation shown in yellow fill. (e) 6 km depth slice through initial model. (f) 6 km depth slice through the final model in which 
dike features are resolved. Arrows highlight key changes. 
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• the imaging of presalt structure is improved (see especially 
yellow arrow in Figure 4d and compare to corresponding 
arrow in Figure 4b). 

�ese improvements were realized despite limited low frequencies 
in the data set, with reliable signal unavailable below 4 Hz.

Dense, shallow-water OBN data from West of Shetland, UK.
Our second example is a high-density marine (OBN) survey 
acquired by BP in 2017 over the Clair Field with a source sampling 
of 25 × 25 m and a receiver sampling of 50 × 100 m. �e Clair Field 
is located approximately 75 km west of the Shetland Islands in 
shallow water (roughly 140 m depth). Figures 5a, 5b, and 5c show 
an inline, crossline, and 800 m depth slice, respectively, extracted 
from the initial model, while Figures 5d–5f show the corresponding 
sections from the model obtained after running high-resolution 
DMFWI up to 40 Hz. A considerable amount of model sedimentary 
detail is resolved after DMFWI. �is results in �atter and geologi-
cally plausible events on the migrated volume created using the 
DMFWI-updated model (Figures 5j–5l, where corresponding 
initial-model migrated volume is shown in Figures 5g–5i).

areas. Experience has shown that conventional work�ows based on 
tomography and/or human interpretation cannot provide the required 
degree of accuracy, which makes this a great candidate for FWI. 

DMFWI succeeded in delineating the volcanic velocities and 
improved the overall image. �e initial model input into FWI is 
shown in Figure 4a with the corresponding migrated image shown 
in Figure 4b. �e DMFWI-updated velocity model is shown in 
Figure 4c with the corresponding revised migrated image in 
Figure 4d. �ere are several key improvements: 

• higher volcanic velocities are inserted (black arrow, Figure 4c) 
along the thin horizontal volcanic sill (cyan arrow, Figure 4d); 

• velocities are re�ned within Albian-age carbonate layers lying 
directly atop the salt (pink arrows, Figures 4a–4d); 

• within the Albian carbonates and under the volcanic sill, a 
thin volcanic dike, previously blurred, is now focused (red 
arrow in Figure 4d); moreover, the trend of this structure is 
captured in the velocity model (Figure 4f, red arrow); 

• salt velocity (initially a constant velocity of 4500 m/s) is 
re�ned; and 

Figure 5. Clair OBN DMFWI results. (a), (b), and (c) Initial velocity model along inline, crossline, and 800 m depth slice, respectively. (d), (e), and (f) Same as (a), (b), and (c) except model is 
after DMFWI. (g), (h), and (i) 80 Hz Kirchho� migration associated with initial model. (j), (k), and (l) 80 Hz Kirchho� migration associated with final model after DMFWI. Yellow dashed lines 
on vertical sections indicate the 800 m depth level shown in the depth slices in (c), (f), (i), and (l).
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Dense shallow-water OBN data from North Sea. Here we 
explore another European shallow-water OBN data set with a 
bathymetry averaging 110 m. �e area is located approximately 
350 km southeast of the Clair Field in the South Viking Graben, 
North Sea. Despite its geographic proximity to Clair, the geology 
and associated imaging issues in the present example are very 
di�erent. �e survey covers an area of more than 2000 km2, with 
a variety of plays ranging in stratigraphy from Tertiary to Paleozoic 
basement. Key seismic challenges include complex overburden 
(shallow channels, shallow gas, and injectites — also known as 
v-brights) generating strong multiples and leading to poor re�ector 
continuity, insu�cient illumination of 
subsurface targets, and inaccurate delin-
eation of structural faulting at the target 
area. Injectites are intrusive sands with 
high velocity and impedance contrast 
relative to the surrounding host rock, 
which are often prospective. Deriving a 
su�ciently accurate velocity model and 
proper placement of these geobodies in 
the migrated cubes require an abundance 
of azimuthal information and low-fre-
quency signal, both of which are avail-
able in our full-azimuth OBN survey. 

In 2019–2020, a regional process-
ing e�ort was undertaken on this OBN 
data set. �e work�ow inverted early-
arrival energy only using a maximum 
inline o�set of 6.7 km and a maximum 
frequency of 5 Hz. �us, the FWI 
updates were limited to the overburden 

(approximately the �rst kilometer, above the average level of the 
injectites), while the model of the deeper section relied purely 
on traditional model building based on tomography. �e regional 
processing e�ort produced an acceptable low-resolution velocity 
model, and the resulting �nal image revealed good placement 
of the injectites, re�ector continuity, and fault characterization. 
However, it did not realize the full potential of the densely 
sampled OBN in terms of resolution. Accordingly, in 2020–2021 
we embarked on a new velocity model building e�ort using 
DMFWI with the ambition of achieving an interpretable model 
that explicitly included the injectites. Our DMFWI work�ow 

Figure 7. North Sea OBN final migrated images: (a), (b), and (c) show 2020 regional processing result in chair diagram, crossline, and inline views, respectively; (d), (e), and (f) show 2021 
detailed processing result in chair diagram, inline, and crossline views, respectively.

Figure 6. Chair diagram of North Sea OBN FWI-based velocity models overlain atop final migrated images. Both model building 
e�orts included well calibration and anisotropy updates. (a) 2020 regional processing. (b) 2021 detailed processing using DMFWI.
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included use of longer o�sets (up to 17 km maximum inline 
o�set) and higher frequencies ( fmax = 12 Hz), as well as the 
incorporation of both early-arrival and re�ection energy. In 
addition to DMFWI, the model building included well calibra-
tion and anisotropy updates within the FWI model building 
work�ow, and it was re�ned via multiazimuth Kirchho� tomog-
raphy (six sectors) followed by another pass of well calibration 
and anisotropy update. Final velocity models produced by both 
regional (2020) and new (2021) work�ows are overlain atop 
corresponding migrated seismic images in Figure 6. �e vertical-
section views of both regional (Figure 6a) and new (Figure 6b) 
results show an inline and crossline above 2000 m, where numer-
ous injectites are visible (e.g., yellow arrows). Not only does the 
new DMFWI work�ow provide improved imaging resolution 
compared to the regional one, it also produces a velocity model 
that allows direct interpretation of injectites (e.g., orange arrows). 
�e velocity depth slice at 2000 m also crosses injectites whose 
contours are clearly visible in both model and migrated image 
in the new result (blue arrows) but not in the regional one.

Figure 7 tells a similar story but focuses on the migrated images 
without the distraction of the velocity overlay. Figures 7a–7c show 
the regional result, and Figures 7d–7f show the new 2021 result. 
�ere are obvious and dramatic improvements in the resolution 
of the structure, horizons, faults, and injectites throughout the 
new volume. Among other things, injectite imaging is much crisper 
and more accurate in both section and depth slices in the new 
result in Figure 7d compared to the regional result in Figure 7a 
(yellow arrows), with the pink arrows highlighting a case where 
an injectite is altogether absent in the regional result. �e color 
images in Figures 7b and 7f are crosslines from regional and new 
results, respectively, and they highlight some very large di�erences. 

For example, some re�ectors dipping in di�erent directions in the 
regional data have been corrected in the new data (magenta ellipses). 
In addition, the inline sections in Figures 7c and 7e show a change 
in structure due to improved image resolution (magenta ellipses).

Beyond detection and resolution of injectite bodies, the ability 
to accurately discern between brine-�lled (nonprospective) and 
hydrocarbon-�lled (prospective) �uids residing inside injectite 
pore spaces carries obvious economic bene�t. Figure 8 shows a 
depth slice that intersects drilled hydrocarbon-�lled (left column: 
Figures 8a–8c) and drilled brine-�lled (right column: Figures 8d–8f) 
injectites as shown by red ellipses. �e top row (i.e., Figures 8a 
and 8d) shows the 2020 regional velocity model overlain by the 
seismic, the middle row shows the corresponding model and 
seismic from the new 2021 model building e�ort, and the lower 
row shows a velocity model predicted by a completely independent 
machine learning (ML) work�ow that used the regional model, 
regional image, and wells in the area as input (Jansen et al., 2021). 
Both DMFWI-predicted (Figures 8b and 8e) and ML-predicted 
(Figures 8c and 8f) velocity models support �eld observations 
indicating that higher velocity is associated with nonprospective 
injectites and lower velocity with prospective ones. Although the 
DMFWI and the ML-based models have distinctly di�erent 
resolution due to the nature of the algorithms used to derive them, 
the geologic insights they provide are largely consistent at a broad 
scale and hence reinforce con�dence in results. By contrast, the 
velocity model from the 2020 regional processing (Figures 8a and 
8d) does not have enough resolution to support a meaningful 
interpretation of �uid content.

Ultra-long-o�set sparse OBN from deepwater Gulf of Mexico. 
Our fourth example is from an ultra-long-o�set sparse OBN 
survey collected in the eastern part of the Gulf of Mexico in 

2019 across an area featuring massive 
shallow and deep structurally con-
nected salt masses �e acquisition was 
explicitly designed for FWI applica-
tion, leading to dramatic improvements 
in image quality compared to tradi-
tional (non-FWI-based) imaging 
approaches. �e nominal node spacing 
is 1000 × 1000 m and source spacing 
is 50 × 100 m. A minimum 40 km o�set 
for each node location was acquired in 
order to capture diving waves down to 
the original Louann salt level. Detailed 
information about the acquisition 
design and the challenges in preparing 
the data can be found in Roende 
et al. (2020). �e study area contains 
an assortment of complex structures 
related to salt tectonics, including 
large-scale salt feeders with well-
developed megaf laps connecting 
deeper, in-situ Louann salt to salt 
canopies. Sharp velocity variations 
include slow-velocity gas chimneys, a 
dramatic velocity di�erence between 

Figure 8. Utsira OBN final velocity model depth slices at approximately 1600 m: (a), (b), and (c) show models crossing prospective 
injectites (red ellipses) from regional processing, new model building, and ML-based prediction, respectively; (d), (e), and (f) show 
corresponding model results crossing nonprospective injectites. Both regional and DMFWI models are overlain by the seismic.
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Miocene and younger sediments and adjacent salt, and, at depth, 
hard Mesozoic carbonates with velocities faster than salt.

Although we put a great deal of e�ort into re�ning our tilted 
orthorhombic legacy model, including many iterations of high-
resolution tomography and intensive human salt interpretation, 
the legacy model still struggles to reveal accurate velocity details 
in this geologically complex environment. By contrast, the model 
obtained after DMFWI reveals a wealth of previously obscured 
and complex detail whose geologic 
plausibility is a�rmed by the high qual-
ity of the corresponding migration. 
Figures 9a and 9b display an inline and 
crossline through the initial velocity 
model, while Figures 9c and 9d show 
corresponding DMFWI sections. 
Figure 10 shows the corresponding 
migrated seismic sections, which reveal 
stunning uplift after DMFWI. �e 
capture and delineation of fast-velocity 
carbonates, including where near verti-
cal along salt walls, provide both the 
biggest change to the model (red arrows, 
Figures 9c and 9d) and a fundamental 
improvement in imaging the structure 
of previously obscured salt stocks and 
associated megaf laps (pink arrow, 
Figure 10c). �is is the main model 
update that led to a signi�cant uplift in 
focusing the base of Louann salt (yellow 
arrows, Figure 10c), which con�rms 

overall velocity integrity and accentuates presalt features (orange 
arrow, Figure 10d). In addition to the aforementioned improve-
ments, there are numerous other signi�cant changes to the model 
as well as obvious uplift in the associated imaging. Two other 
signi�cant model enhancements are slower velocities of shallow 
gas chimneys and clouds (black arrows, Figure 9c) and re�nements 
of the salt geometry and of inner-salt features, such as where two 
inner-salt inclusions in the input model are mostly removed (yellow 

Figure 9. Amendment sparse OBN velocity models. (a) and (b) Initial model along inline and crossline directions, respectively. 
(c) and (d) Final model after DMFWI along inline and crossline, respectively. Arrows point to features discussed in the text.

Figure 10. Gulf of Mexico sparse OBN migrated images before and after DMFWI. (a) and (b) Migrated images associated with initial model along inline and crossline directions, respectively. 
(c) and (d) Migrated images associated with DMFWI model along inline and crossline directions, respectively. Arrows point to imaging improvements discussed in the text.
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arrows, Figure 9a). �e entire subsalt model is improved, and 
signi�cant detail is added, resulting in the healing of near-salt 
sediment breaks in the migrated image (green arrow, Figure 10d) 
as well as improvement in the subsalt sediment structure (cyan 
arrows, Figure 10c). 

NAZ data from deepwater o�shore Gabon. Our �nal example 
is a NAZ streamer survey located in deepwater o�shore Gabon 
acquired with a 7 km cable length at 100 m separation. Due to 
the water depth and short cable length, there was limited coverage 
of diving wave energy in the survey area. 

�e shallow sediments beneath the rugose seabed form a com-
plex series of multilevel channels and deltaic fan deposits as can be 
seen from the intermediate migration depth slice at z = 2400 m 
shown in Figure 11a. �ese shallow structures are composed of 
highly variable sediments with low-velocity shales/muds and higher-
velocity sand lenses. Undulations visible in the underlying Oligocene 
and Cretaceous sediments in the legacy migration (Figure 11c) are 
presumably due to imperfections in estimating the large velocity 
variations present within these shallow structures.

�e initial velocity model was derived from several passes of 
image-guided tomography. DMFWI was then used to re�ne that 
model to resolve the strong velocity heterogeneity within the 
sediments in the vicinity of the shallow channel formations. 
Figure 11b shows a depth slice of the model after DMFWI from 
the same level (z = 2400 m) as the intermediate migration shown 
in Figure 11a. While this shallow model contains a small amount 
of acquisition footprint (removed in subsequent model re�nement), 
it also reveals exquisite detail in the shallow geology, including 
obvious channel features whose patterns are generally consistent 
with the migrated slice in Figure 11a. Migration using this 
DMFWI-updated model produces the image shown in Figure 11d. 
By comparing this �nal migrated image to its initial-model coun-
terpart in Figure 11c, we see that DMFWI has done an excellent 
job in removing undulations in the underlying Oligocene and 
Cretaceous sediments.

Conclusions
�is paper describes DMFWI, a 

novel algorithm of FWI whose e�ective-
ness has been demonstrated with its 
successful application to many data sets 
across di�erent geologic settings and 
acquisition con�gurations. �e algo-
rithm’s ability to dynamically match 
observed and predicted data provides it 
with remarkable robustness with respect 
to noise and relative insensitivity to 
elastic e�ects that are not properly mod-
eled by an acoustic kernel. Additional 
constraints posed in both data and model 
domains also play a large role in forcing 
its convergence to a geologically plausible 
model. �e algorithmic advantages 
directly bene�t the FWI imaging pro-
cess, resulting in high-resolution re�ec-
tivity images that extend FWI’s appli-
cability beyond velocity model updating 

into the realm of direct inversion for structural images. 
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