
Wireline logs are a fundamental aspect of subsurface property 
characterization. However, economic constraints often limit 
data acquisition from specific logs or depth intervals, resulting 
in incomplete information from the well’s surface to its base 
in many areas. An alternative that addresses the lack of data 
is to create synthetic curves. With the advent of data science 
and the availability of digitized well data, machine learning 
(ML) algorithms can be used to predict missing logs or log 
intervals. TGS’ Analytics Ready LAS (ARLAS) leverages both 
the vast amount of well log data in the TGS library as well as 
data management infrastructure. TGS algorithms provide curve 
predictions for five standard curves, including the confidence 
intervals of each log which can be used for automated 
interpretation such as facies classification or basin stratigraphy.

TGS has developed an end-to-end ML workflow for well-log 
prediction at a basin scale. The workflow starts with the well-log 
cleaning process, which involves extensive data cleanup before 
ML training and inference. After the well logs have been cleaned, 
the workflow consists of ML training, validation, and inference 
based on a gradient-boosted regression trees algorithm. The 
ML models have been created across all the US unconventional 
onshore basins (Figure 1).

Before training ML algorithms, data preparation and cleanup are 
necessary. Traditional workflows require manual log cleanup 
on a per-well basis. Nonetheless, this manual approach needs 
to be more scalable for ML applications. To develop practical 
ML tools for well-log prediction, an automated pipeline for 
well-log cleaning is required. Our cleanup methodology 
includes processing steps such as curve categorization, unit 
standardization, log splicing, depth shifting, normalization, and 
inferior data removal or editing (Figure 2). Our design principle 

for this pipeline is to minimize the need for human interpretation 
and save time by automating complex processes. This approach 
enables basin-wide application and improves consistency and 
accuracy in decision-making.

The log-cleaning workflow begins with curve categorization, 
which defines curves based on measurement type, logging tool, 
and operator. In the ARLAS model, the curve categories include 
Total Gamma Ray, Neutron Porosity, Compressional Sonic, Bulk 
Density, and Deep Resistivity. The Neutron Porosity and Deep 
Resistivity curves are further classified based on rock matrix 
setup and penetration depth. By creating a comprehensive list 
of standardized curve mnemonics for each category, users 
can easily update the list when encountering new unknown 
mnemonics. The importance of curve mnemonics is exemplified 
in the Permian Basin, where the same mnemonics can be 
encountered for different log types.
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Figure 1. US onshore basins with existing ARLAS ML models for 
predicting missing data in well logs. The dark blue polygon encircles  
the data used for the Permian Basin model.

Figure 2. TGS’ well log cleanup workflow.
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After curve categorization, unit standardization is applied to all logs in a basin. This step 
corrects nonstandard units, typos, and mistakes. Figure 3 (a-b) presents the results of fixing 
the mnemonics and units of gamma ray logs for an arbitrary cross-section of 800 wells in the 
Permian Basin. The next step is log splicing, which combines similar curve measurements from 
different logging runs to construct a single curve. Log splicing involves selecting the primary 
and secondary curves in all available logging runs and calibrating them to ensure they are on a 
similar scale. The effects of splicing are shown in Figure 3 (c).

Figure 3. Change in the state of 
an arbitrary gamma ray cross-
section in the Permian Basin 
during the cleanup workflow. 
Cross-section (a) shows data 
with basic mnemonics and 
unit analyses of common 
mnemonics and standard units. 
Cross-section (b) shows the 
same data after more rigorous 
mnemonic analyses, fixing 
mnemonic clashes, checking, 
and fixing unit issues. Due to 
thorough mnemonic and unit 
QC (Quality Control), several 
logs are added to the cross-
section. Cross-section (c) 
shows the effect of log merging. 
The wells have better depth 
coverage. Cross-section (d) 
shows the impact of basin-scale 
log normalization. Artificially 
high and low gamma ray values 
present in (c) are fixed in (d).
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The penultimate step is log curve basin-scale spatial 
normalization, which involves bringing logs of the same type 
from different wells to the same scale to have similar responses 
from similar rocks across the basin. This process is necessary 
because basin-scale well log datasets contain wells of different 
vintages, logging tool manufacturing, calibration variations, 
inconsistent log units, changes in the borehole environment, and 
various environmental corrections. Figure 4 shows the effect of 
spatial normalization on two adjacent wells. After normalization, 
the gamma ray log range is similar for both wells. Figure 3 (d) 
shows the effect of basin-scale log normalization on the Permian 
cross-section view.

Finally, a basin-wide limit is set to flag questionable intervals 
and complimentary curves such as density and caliper. These 
erroneous values may be due to borehole or equipment-related 
errors and are challenging to identify with machine learning. 
The limit enables the automated detection of bad data quality. 

Well-log curves may contain erroneous values due to borehole 
or equipment-related errors, which can be challenging to identify 
with machine learning. To automate the detection of bad data 
quality, a basin-wide limit is set to flag questionable intervals and 
complimentary curves such as density and caliper. 

ARLAS is a machine-learning pipeline that predicts missing 
logs at a basin scale. It specifically targets five types of logs, 
including density, gamma ray, neutron porosity, deep resistivity, 
and compressional sonic. The pipeline uses a combination of 
input features, such as compressional sonic and gamma ray 
logs, logarithms of deep resistivity and neutron porosity, cube of 
bulk density, and spatial locations, to make accurate predictions. 
For each target curve, separate models are trained from different 
combinations of available measured curves using the Light 
Gradient Boosting (LGB) Tree Algorithm. Gradient boosting is a 
tree-based method with the capacity for modeling data-driven 
piece-wise target-feature interactions. It predicts a target value 
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Figure 4. Gamma ray curve (red) before (a) and after (b) normalization 
flow as compared to the reference curve (black).

Synthetic well log curves fill 
data gaps in the subsurface 
for five standard log  
types resulting in full  
quad-combo-equivalent 
curve coverage at  
a basin scale.
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by building weak prediction models where each model tries to 
predict the error left over by the previous model. The algorithm 
concentrates on the data that does not give a good result by 
weighing them higher as new learners are trained. 

TGS trains models for different combinations of input features 
and target curves because variations in feature availability 
may exist in each well and for different depths within the same 
well. Models were built depending on the available data and 
combined with recorded logs to fill the existing data gaps and 
improve data coverage. Figure 5 shows an example of using 
ARLAS models to fill data gaps in the bulk density log for one 
of the wells in the Permian Basin. In Figure 6, we show the 
results of ARLAS modeling for a cross-section of 800 wells 
in the Permian Basin for compressional sonic. The contrast 
in prediction accuracy between cross-sections (b) and (c) 
highlights the significance of implementing an automated 
cleanup process before applying ML to log data on a basin 
scale. The prediction error was calculated in a blind test 
comprising 679 wells, and the model’s performance was 
evaluated in intervals where both data and prediction exist. The 
results show that ARLAS effectively predicts missing logs and 
improves data coverage, achieving a prediction quality of 90% 
to 95% if trained on clean data. 

We have demonstrated the importance of data cleaning in 
predicting well logs using ML algorithms, resulting in higher-
quality outcomes on a basin scale. Our data-cleaning pipeline 
builds on our extensive data management infrastructure and is 
straightforward, fast, and requires minimal expert intervention. 
It rectifies LAS and log header errors, eliminates or modifies 
low-quality data, normalizes logs to account for tool and 
environmental effects, splices and merges logs from various 
runs, and adjusts depth for alignment. Using the Permian Basin 
in the US as an example, we have shown that the ML models 
deliver exceptional results when provided with high-quality 
data for training and inference which can then be used as 
feedstock for additional machine-guided interpretation.
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Figure 5. Application of the ARLAS modeling workflow for a bulk 
density log of one of the wells in the Permian Basin. The first track 
(a) shows the recorded data in the well (black). The second track (b) 
displays the ARLAS prediction (red). The third track (c) shows the 
measured data (black) and predictions (red). The fourth track (d) shows 
the final product, where the original data (black) is combined with the 
predictions (red) to extend the log depth coverage and fill data gaps.

Figure 6. ARLAS modeling for a compressional sonic cross-section 
of eight hundred wells in the Permian Basin. Cross-section (a) shows 
the original measured data available in input LAS files without 
processing. Cross-section (b) shows the same cross-section with 
ARLAS predictions added to the original input data from (a). Cross-
section (c) shows the improvements in ARLAS predictions using the 
cleaned input data. Red arrows indicate areas of most improvement.
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